THE HNSB.LTD. SCIENCE COLLEGE, HIMATNAGAR

www.hnsbscihmt.org

B.Sc., Semester -3

CHEMISTRY PRACTICAL RECORD BOOK

Program Name: B. Sc. ChemPMJDSCistry Semester: III

PROGRAM CODE : SCIUG102

COURSE CODE : SC23PMJDSCCHE301

Type of Course: Practicals Major Discipline Specific Course PMJDSC

Name of Course: Practical's for Basic chemistry I

Total Marks : 100

Name of Student:	
Group:	Roll Number:
Practical Batch:	
Exam Number:	
Mobile Number:	

Practical Index SC23PMJDSCCHE301

No.	Practical	Practical date	Teacher's Sign. /Date
GRO	UP: A Inorganic Qualitative analysis (25 MARKS)		
1	Inorganic Qualitative Mixture		
2	Inorganic Qualitative Mixture		
3	Inorganic Qualitative Mixture		
4	Inorganic Qualitative Mixture		
5	Inorganic Qualitative Mixture		
6	Inorganic Qualitative Mixture		
7	To separate Pb,Hg and Ag ions present in a mixture by paper cromatrography.		
8	To separate Zn,Co, Ni ions present in a mixture by paper cromatrography.		
GRO	UP: B Physical Chemistry (25 MARKS)		
1	To determine the end-point and find out the normality of given x N HCL/CH ₃ COOH using 0.1 N NaOH by conductometric titration-1		
2	To determine the end-point and find out the normality of given x N HCL using 0.1 N NH ₄ OH by conductometric titration-2		
3	To determine the Normality of given x N HCL using 0.1 N NaOH by pH metric titration-1		
4	To determine the Dissociation constant of monobasic acid using various mixtures of CH3COOH and CH3COONa by pH metry method-2		
5	To determine the Specific and Molar refraction of the given liquid A,B and C and Calculate % composition of A and B in Mixture C (Refractometer)		
6	To Study kinetic reaction of decomposition of H ₂ O ₂ catalyzed by iodide ion		
7	To determine the solubility of organic acid at different temperatures and to determine Heat of solution of the dissolution process		
8	To determine the Viscosity of a different mixture of Liquid 1 and liquid 2 and determine the % composition of given unknown mixture by graphical method		

<u>Inorganic Qualitative Analysis</u> (B.Sc.Semester-3)

Practical No 1	Date:

[A] Preliminary Test

No	Test	Observation	Inferences
1	State	Crystalline \ Amorphous	
2	Colour of Mixture		
3	Odour		

[B] Dry Test

(a) Dry Test for Positive Radical.

No	Test Total Test	Observation	Inferences
1	Heating in dry Test Tube		
2	Flame test		
3	Borex Bead Test		
4	Sub + NaOH Heat		
5	Acid extract test for (Fe ⁺² and Fe ⁺³)		

(b) Dry Test for Negative Radical.

No	Test	Observation	Inferences
1	Mix +dil. HCl		
2	Mix + Con.H ₂ SO ₄		
3	Mix + MnO2+		
	Con. H ₂ SO ₄		
4	Mix + Cu foil +		
	Con. H ₂ SO ₄		

[C] Water Extract Test.

No	Test	Observation	Inferences
1	W.E. + Nessler's reagent		
2	W.E.+ Zinc		
	Urenylacetate.		
3	W.E.+ Picric Acid		
4	W.E.+ FeSO ₄ (frees		
	solution) + Con. H ₂ SO ₄		
5	W.E. + AgNO ₃		
6	W.E.+ BaCl ₂		
7	W.E.(Yellow)+HCl		
	+H ₂ S		
8	W.E.(Orange)+H ₂ S		

Result f	From the Dry Test and W.E. test.
Positive Radical:	Negative Radical:

- [D] Wet Test
- (a) Wet Test for Positive Radical
- (i) Preparation of Original Solution:

(ii) Group Separation for Positive Radical

No	Test	Observation	Inferences
1	O.S.+ dil HCl		
2	$O.S.+ dil HCl + H_2S (g)$		
3	O.S.+ NH ₄ Cl + NH ₄ OH		
4	$O.S. + NH_4Cl + NH_4OH + H_2S(g)$		
5	$O.S. + NH_4Cl + NH_4OH + (NH_4)_2CO_3$		
6	$O.S. + NH_4Cl + NH_4OH + NH_4H_2PO_4$		

(iii) _____ Group Classification.

No	Test	Observation	Inferences

No	Test	Observation	Inferences
(i	v) Confirmative Test for Positive F	Radical.	
No	Test	Observation	Inferences
	v) Confirmative Test for Negative	· Radical	
No	v) Confirmative Test for Negative Test	e Radical Observation	Inferences
			Inferences
No			Inferences
No []	Test		Inferences

__ Group Classification.

(iii) _

<u>Inorganic Qualitative Analysis</u> (B.Sc.Semester-3)

[A] Preliminary Test

No	Test	Observation	Inferences
1	State	Crystalline \ Amorphous	
2	Colour of Mixture		
3	Odour		

[B] Dry Test

(a) Dry Test for Positive Radical.

No	Test	Observation	Inferences
1	Heating in dry Test Tube		
2	Flame test		
3	Borex Bead Test		
4	Sub + NaOH Heat		
5	Acid extract test for (Fe ⁺² and Fe ⁺³)		

(b) Dry Test for Negative Radical.

No	Test	Observation	Inferences
1	Mix +dil. HCl		
2	Mix + Con.H ₂ SO ₄		
3	Mix + MnO2+		
	Con. H ₂ SO ₄		
4	Mix + Cu foil +		
	Con. H ₂ SO ₄		

[C] Water Extract Test.

No	Test	Observation	Inferences
1	W.E. + Nessler's reagent		
2	W.E.+ Zinc		
	Urenylacetate.		
3	W.E.+ Picric Acid		
4	W.E.+ FeSO ₄ (frees		
	solution) + Con. H ₂ SO ₄		
5	W.E. + AgNO ₃		
6	W.E.+ BaCl ₂		
7	W.E.(Yellow)+HCl		
	+H ₂ S		
8	W.E.(Orange)+H ₂ S		

Result from the Dry Test and W.E. test.		
Positive Radical:	Negative Radical:	

- [D] Wet Test
- (a) Wet Test for Positive Radical
- (i) Preparation of Original Solution:

(ii) Group Separation for Positive Radical

No	Test	Observation	Inferences
1	O.S.+ dil HCl		
2	$O.S.+ dil HCl + H_2S (g)$		
3	O.S.+ NH ₄ Cl + NH ₄ OH		
4	$O.S. + NH_4Cl + NH_4OH + H_2S(g)$		
5	$O.S. + NH_4Cl + NH_4OH + (NH_4)_2CO_3$		
6	$O.S. + NH_4Cl + NH_4OH + NH_4H_2PO_4$		

(iii) _____ Group Classification.

No	Test	Observation	Inferences

No	o Test	Observation	Inferences
	(iv) Confirmative Test for Positive	Dadical	
			I
No	Test	Observation	Inferences
I			
	(v) Confirmative Test for Negativ	e Radical	
No	Test	Observation	Inferences
Г	E] Result Table		
	Positive Radical		
L	Negative Radical		
L	regaure nauleai		

_____ Group Classification.

<u>Inorganic Qualitative Analysis</u> (B.Sc.Semester-3)

[A] Preliminary Test

No	Test	Observation	Inferences
1	State	Crystalline \ Amorphous	
2	Colour of Mixture		
3	Odour		

[B] Dry Test

(a) Dry Test for Positive Radical.

No	Test	Observation	Inferences
1	Heating in dry Test Tube		
2	Flame test		
3	Borex Bead Test		
4	Sub + NaOH Heat		
5	Acid extract test for (Fe ⁺² and Fe ⁺³)		

(b) Dry Test for Negative Radical.

No	Test	Observation	Inferences
1	Mix +dil. HCl		
2	Mix + Con.H ₂ SO ₄		
	NA' NA 02		
3	Mix + MnO2+ Con. H ₂ SO ₄		
	Con. 1125O4		
4	Mix + Cu foil +		
	Con. H ₂ SO ₄		

[C] Water Extract Test.

No	Test	Observation	Inferences
1	W.E. + Nessler's reagent		
2	W.E.+ Zinc Urenylacetate.		
3	W.E.+ Picric Acid		
4	W.E.+ FeSO ₄ (frees solution) + Con. H ₂ SO ₄		
5	W.E. + AgNO ₃		
6	W.E.+ BaCl ₂		
7	W.E.(Yellow)+HCl +H ₂ S		
8	W.E.(Orange)+H ₂ S		

Result from the Dry Test and W.E. test.		
Positive Radical:	Negative Radical:	

- [D] Wet Test
- (a) Wet Test for Positive Radical
- (i) Preparation of Original Solution:

(ii) Group Separation for Positive Radical

No	Test	Observation	Inferences
1	O.S.+ dil HCl		
2	$O.S.+ dil HCl + H_2S (g)$		
3	O.S.+ NH ₄ Cl + NH ₄ OH		
4	$O.S. + NH_4Cl + NH_4OH + H_2S(g)$		
5	$O.S. + NH_4Cl + NH_4OH + (NH_4)_2CO_3$		
6	$O.S. + NH_4Cl + NH_4OH + NH_4H_2PO_4$		

(iii) _____ Group Classification.

Test	Observation	Inferences
	Test	Test Observation

N	Test	Observation	Inferences		
((iv) Confirmative Test for Positiv	e Radical.			
No	Test	Observation	Inferences		
	(v) Confirmative Test for Negati				
No	Test	Observation	Inferences		
 	[E] Result Table				
	Positive Radical				
	Negative Radical				

__ Group Classification.

(iii) _

<u>Inorganic Qualitative Analysis</u> (B.Sc.Semester-3)

Practical No. – 4	Date:
-------------------	-------

[A] Preliminary Test

No	Test	Observation	Inferences
1	State	Crystalline \ Amorphous	
2	Colour of Mixture		
3	Odour		

[B] Dry Test

(a) Dry Test for Positive Radical.

No	Test Total Test	Observation	Inferences
1	Heating in dry Test Tube		
2	Flame test		
3	Borex Bead Test		
4	Sub + NaOH Heat		
5	Acid extract test for (Fe ⁺² and Fe ⁺³)		

(b) Dry Test for Negative Radical.

No	Test	Observation	Inferences
1	Mix +dil. HCl		
2	Mix + Con.H ₂ SO ₄		
3	Mix + MnO2+		
	Con. H ₂ SO ₄		
4	Mix + Cu foil +		
	Con. H ₂ SO ₄		

[C] Water Extract Test.

No	Test	Observation	Inferences
1	W.E. + Nessler's reagent		
2	W.E.+ Zinc Urenylacetate.		
3	W.E.+ Picric Acid		
4	W.E.+ FeSO ₄ (frees solution) + Con. H ₂ SO ₄		
5	W.E. + AgNO ₃		
6	W.E.+ BaCl ₂		
7	W.E.(Yellow)+HCl +H ₂ S		
8	W.E.(Orange)+H ₂ S		

Result from the Dry Test and W.E. test.		
Positive Radical :	Negative Radical:	

- [D] Wet Test
- (a) Wet Test for Positive Radical
- (i) Preparation of Original Solution:

(ii) Group Separation for Positive Radical

No	Test	Observation	Inferences
1	O.S.+ dil HCl		
2	$O.S.+ dil HCl + H_2S (g)$		
3	O.S.+ NH ₄ Cl + NH ₄ OH		
4	$O.S. + NH_4Cl + NH_4OH + H_2S(g)$		
5	$O.S. + NH_4Cl + NH_4OH + (NH_4)_2CO_3$		
6	$O.S. + NH_4Cl + NH_4OH + NH_4H_2PO_4$		

(iii) _____ Group Classification.

No	Test	Observation	Inferences

N	Test Test	Observation	Inferences
((iv) Confirmative Test for Positive Radica	al.	
No	Test	Observation	Inferences
	(v) Confirmative Test for Negative Radio		
No	Test	Observation	Inferences
[[E] Result Table	1	
-	Positive Radical		
	Negative Radical		

__ Group Classification.

<u>Inorganic Qualitative Analysis</u> (B.Sc.Semester-3)

[A] Preliminary Test

No	Test	Observation	Inferences
1	State	Crystalline \ Amorphous	
2	Colour of Mixture		
3	Odour		

[B] Dry Test

(a) Dry Test for Positive Radical.

No	Test	Observation	Inferences
1	Heating in dry Test Tube		
2	Flame test		
3	Borex Bead Test		
4	Sub + NaOH Heat		
5	Acid extract test for (Fe ⁺² and Fe ⁺³)		

(b) Dry Test for Negative Radical.

No	Test	Observation	Inferences
1	Mix +dil. HCl		
2	Mix + Con.H ₂ SO ₄		
	NA' NA 02		
3	Mix + MnO2+ Con. H ₂ SO ₄		
	Con. 1125O4		
4	Mix + Cu foil +		
	Con. H ₂ SO ₄		

[C] Water Extract Test.

No	Test	Observation	Inferences
1	W.E. + Nessler's reagent		
2	W.E.+ Zinc		
	Urenylacetate.		
3	W.E.+ Picric Acid		
4	W.E.+ FeSO ₄ (frees		
	solution) + Con. H ₂ SO ₄		
5	W.E. + AgNO ₃		
6	W.E.+ BaCl ₂		
7	W.E.(Yellow)+HCl		
	+H ₂ S		
8	W.E.(Orange)+H ₂ S		

Result from the Dr	y Test and W.E. test.
Positive Radical:	Negative Radical:

- [D] Wet Test
- (a) Wet Test for Positive Radical
- (i) Preparation of Original Solution:

(ii) Group Separation for Positive Radical

No	Test	Observation	Inferences
1	O.S.+ dil HCl		
2	$O.S.+ dil HCl + H_2S (g)$		
3	O.S.+ NH ₄ Cl + NH ₄ OH		
4	$O.S. + NH_4Cl + NH_4OH + H_2S(g)$		
5	$O.S. + NH_4Cl + NH_4OH + (NH_4)_2CO_3$		
6	$O.S. + NH_4Cl + NH_4OH + NH_4H_2PO_4$		

(iii) _____ Group Classification.

No	Test	Observation	Inferences

N	Test Test	Observation	Inferences
((iv) Confirmative Test for Positive Radica	al.	
No	Test	Observation	Inferences
	(v) Confirmative Test for Negative Radio		
No	Test	Observation	Inferences
[[E] Result Table	1	
-	Positive Radical		
	Negative Radical		

__ Group Classification.

<u>Inorganic Qualitative Analysis</u> (B.Sc.Semester-3)

	Practical No 6	Date:
--	----------------	-------

[A] Preliminary Test

No	Test	Observation	Inferences
1	State	Crystalline \ Amorphous	
2	Colour of Mixture		
3	Odour		

[B] Dry Test

(a) Dry Test for Positive Radical.

No	Test	Observation	Inferences
1	Heating in dry Test Tube		
2	Flame test		
3	Borex Bead Test		
4	Sub + NaOH Heat		
5	Acid extract test for (Fe ⁺² and Fe ⁺³)		

(b) Dry Test for Negative Radical.

No	Test	Observation	Inferences
1	Mix +dil. HCl		
2	Mix + Con.H ₂ SO ₄		
	NA' NA 02		
3	Mix + MnO2+ Con. H ₂ SO ₄		
	Con. 1125O4		
4	Mix + Cu foil +		
	Con. H ₂ SO ₄		

[C] Water Extract Test.

No	Test	Observation	Inferences
1	W.E. + Nessler's reagent		
2	W.E.+ Zinc Urenylacetate.		
3	W.E.+ Picric Acid		
4	W.E.+ FeSO ₄ (frees solution) + Con. H ₂ SO ₄		
5	W.E. + AgNO ₃		
6	W.E.+ BaCl ₂		
7	W.E.(Yellow)+HCl +H ₂ S		
8	W.E.(Orange)+H ₂ S		

Result from the Dry Test and W.E. test.		
Positive Radical:	Negative Radical:	

- [D] Wet Test
- (a) Wet Test for Positive Radical
- (i) Preparation of Original Solution:

(ii) Group Separation for Positive Radical

No	Test	Observation	Inferences
1	O.S.+ dil HCl		
2	$O.S.+ dil HCl + H_2S (g)$		
3	O.S.+ NH ₄ Cl + NH ₄ OH		
4	$O.S. + NH_4Cl + NH_4OH + H_2S(g)$		
5	O.S. + NH4Cl + NH4OH + (NH4)2CO3		
6	$O.S.+ NH_4Cl + NH_4OH + NH_4H_2PO_4$		

(iii) _____ Group Classification.

No	Test	Observation	Inferences

No	Tes	st	Observation	Inferences
(1	iv) Confirmative Test 1	for Positive Radical.		
No	Te	st	Observation	Inferences
	(v) Confirmative Test			
No	Te	st	Observation	Inferences
r	El D (70. 1.)			
	E] Result Table	I		
	Positive Radical			
	Negative Radical			

_____ Group Classification.

Observation:

Distance travelled by the solvent from the origin line = ____ cm

Spot	Cations	Colour of Spot	Rf value
A	Ag		
В	Pb		
C (A+B)	Ag + Pb		

Calculation:

$$Rf = \frac{\textit{Distance travelled by Cation solu. from origin line}}{\textit{Distance travelled by Solvent from origin line}}$$

${\bf Analytical\ Chemistry\ Chromatographic\ Separation\ (B.Sc. Semester-3)}$

Practical No- 7	Date:
Aim: Paper Chromatographic separation of 1 st group in	metal (Ag^{+1} and Pb^{+2}).
Requirement: Chromatography Paper, Jar, DW, Ag ⁺¹	and Pb ⁺² Salt solution.
Developing Solvent- DW	
Locating Reagent:; K ₂ CrO ₄ and Ammonia solu.	
Procedure:	
Result:	
1. Rf value of Ag =	
2. Rf value of Pb=	

Signature of Teacher

3. Rf value of Ag = _____ and Pb= ____ in mixture

Observation:

Distance travelled by the solvent from the origin line = ____ cm

Spot	Cations	Colour of Spot	Rf value
A	Co		
В	Ni		
C (A+B)	Co+Ni		

Calculation:

$$Rf = \frac{\textit{Distance travelled by Cation solu. from origin line}}{\textit{Distance travelled by Solvent from origin line}}$$

Analytical Chemistry Chromatographic Separation (B.Sc.Semester-3)

Practical No- 8	Date:
Aim: Paper Chromatographic separation of Co and Ni.	
Requirement: Chromatography Paper, Jar, DW, CoCl2 and	NiCl2 Salt solution.
Developing Solvent - Acetone +Ethyl acetate+6M HCl (45%	+45%+10%).
Locating Reagent: alcoholic solution of alizarin with 0.1% rubeanic acid.	of salicyldoxime and 0.1% of
Procedure:	
Result:	
1. Rf value of Co =	
2. Rf value of Ni=	

3. Rf value of Co = _____ and Ni = ____ in mixture

EXPERIMENT NUMBER: 1 [CONDUCTOMETRIC TITRATION]

Observation Table:

No.	ml of 0.1 N NaOH solu. Form burette(V ml)	Conductivity (Mhos) C.
1	0.00	
2	0.25	
3	0.50	
4	0.75	
5	1.00	
6	1.25	
7	1.50	
8	1.75	
9	2.00	
10	2.25	
11	2.50	
12	2.75	
13	3.00	
14	3.25	
15	3.50	
16	3.75	
17	4.00	
18	4.25	
19	4.50	
20	4.75	
21	5.00	
22	5.25	
23	5.50	
24	5.75	
25	6.00	
26	6.25	
27	6.50	
28	6.75	
29	7.00	
30	7.25	

Graph : Draw the graph of Conductivity (C) against ml of 0.1 N NaOH. From graph V_0 OR $V_2 =$ ____ ml volume of NaOH solution.

Calculation: $N_1V_1 = N_2V_2$

(Acid) = (NaOH)

 N_1 = Normality of Acid = ?

 N_2 = Normality of NaOH = 0.1 N

 V_1 = Volume of acid solution = 20 ml

 V_2 = Volume of NaOH = from graph = V_0

EXPERIMENT NUMBER: 1	[CONDUCTOMETRIC TITRATION]
Date:	
Aim: To determine the end-point and find using 0.1 N NaOH by conductometr Requirements:	out the normality of given x N HCL/CH3COOF
 x N HCL/CH₃COOH (which is given 0.1 N NaOH 	n in 100 ml. measuring flask)
Procedure :	

Results:

- 1.
- The Normality of Given HCL / CH3COOH Solution = _____ N ml. of 0.1 N NaOH required for neutralizing 20 ml. acid V_2/V_0 = ____ ml (from 2. graph)

Signeture and Date of Teacher:

EXPERIMENT NUMBER: 2 [CONDUCTOMETRIC TITRATION]

Observation Table:

1 0.00 2 0.25 3 0.50 4 0.75 5 1.00 6 1.25 7 1.50 8 1.75 9 2.00 10 2.25 11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00 30 7.25	No.	ml of 0.1 N NH4OH sol. Form burette(V ml)	Conductivity (Mhos) C.
3 0.50 4 0.75 5 1.00 6 1.25 7 1.50 8 1.75 9 2.00 10 2.25 11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	1	0.00	
4 0.75 5 1.00 6 1.25 7 1.50 8 1.75 9 2.00 10 2.25 11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	2	0.25	
5 1.00 6 1.25 7 1.50 8 1.75 9 2.00 10 2.25 11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	3	0.50	
6 1.25 7 1.50 8 1.75 9 2.00 10 2.25 11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00		0.75	
7 1.50 8 1.75 9 2.00 10 2.25 11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	5	1.00	
8 1.75 9 2.00 10 2.25 11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00		1.25	
9 2.00 10 2.25 11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00		1.50	
10 2.25 11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	8	1.75	
11 2.50 12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	9	2.00	
12 2.75 13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	10	2.25	
13 3.00 14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	11	2.50	
14 3.25 15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	12	2.75	
15 3.50 16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	13	3.00	
16 3.75 17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	14	3.25	
17 4.00 18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	15	3.50	
18 4.25 19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	16	3.75	
19 4.50 20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	17	4.00	
20 4.75 21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	18	4.25	
21 5.00 22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	19	4.50	
22 5.25 23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	20	4.75	
23 5.50 24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	21	5.00	
24 5.75 25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	22	5.25	
25 6.00 26 6.25 27 6.50 28 6.75 29 7.00	23	5.50	
26 6.25 27 6.50 28 6.75 29 7.00	24	5.75	
27 6.50 28 6.75 29 7.00	25		
28 6.75 29 7.00		6.25	
29 7.00			
	28	6.75	
	29	7.00	
	30		

 $\begin{aligned} & Graph: Draw \ the \ graph \ of \ Conductivity \ (C) \ against \ ml \ of \ 0.1 \ N \ NaOH. \\ & From \ graph \ V_0 \ OR \ V_2 = \underline{\qquad} \ ml \ \ volume \ of \ NaOH \ solution. \end{aligned}$

Calculation: $N_1V_1 = N_2V_2$ (Acid) = (NH4OH)

 N_1 = Normality of HCL = ?

 N_2 = Normality of $NH_4OH = 0.1 N$

 V_1 = Volume of acid solution = 20 ml

 V_2 = Volume of NH₄OH = from graph = V_0

[CONDUCTOMETRIC TITRATION] **EXPERIMENT NUMBER: 2** Aim: To determine the end-point and find out the normality of given x N HCL using 0.1 N NH₄OH by conductometric titration. **Requirements:** 1. x N HCL (which is given in 100 ml. measuring flask) 2. 0.1 N NH₄OH **Procedure:**

Results:

- 1. The Normality of Given HCL Solution = _____N
- 2. ml. of 0.1 N NH₄OH required for neutralizing 20 ml. acid V_2/V_0 =____ ml (from graph)

Signeture and Date of Teacher:

EXPERIMENT NUMBER: 3 [pH METRY TITRATION]

Observation Table:

No.	ml of 0.1 N NaOH solu. Form burette	pН	Δ pH	$\Delta \mathbf{V}$	Δ pH / Δ V
	(V ml)	pm	∆ pm	Δ 🔻	Δ pm / Δ v
1	0.00				
2	0.25				
3	0.50				
4	0.75				
5	1.00				
6	1.25				
7	1.50				
8	1.75				
9	2.00				
10	2.25				
11	2.50				
12	2.75				
13	3.00				
14	3.25				
15	3.50				
16	3.75				
17	4.00				
18	4.25				
19	4.50				
20	4.75				
21	5.00				
22	5.25				
23	5.50				
24	5.75				
25	6.00				
26	6.25				
27	6.50				
28	6.75				
29	7.00				
30	7.25				

Graph: 1. Draw the graph of pH against ml of 0.1 N NaOH.

2. Draw the graph of Δ pH / Δ V against ml of 0.1 N NaOH From graph V₀ OR V₂ = ____ ml volume of NaOH solution.

Calculation: $N_1V_1 = N_2V_2$ (Acid) = (NaOH) N_1 = Normality of Acid = ?

 N_2 = Normality of NaOH = 0.1 N

 V_1 = Volume of acid solution = 20 ml

 V_2 = Volume of NaOH = from graph = V_0

EXPERIMENT NUMBER: 3 [pH METRY TITRATION]

Date:
Aim: To determine the Normality of given x N HCL using 0.1 N NaOH by pH metric
titration.
Requirements:
1. x N HCL (which is given in 100 ml. measuring flask)
2. 0.1 N NaOH
Procedure:
Results:
1. The Normality of Given HCL Solution = N
2. ml. of 0.1 N NaOH required for neutralizing 20 ml. acid V ₂ /V ₀ = ml (from
graph)
Signature and Data of Tanaham
Signeture and Date of Teacher:

EXPERIMENT NUMBER: 4 [pH METRY- Dissociation Constant]

Observation Table:

Flas k No.	V ml of 0.05 M CH ₃ COO H	V ml of 0.05 M CH ₃ COON a	p H	Molarity of [CH ₃ COONa] in mixture	Molarity of [CH ₃ COOH] in mixture	$\log \frac{[CH_3COONa]}{[CH_3COOH]}$
1	45 ml	05 ml				
2	35 ml	15 ml				
3	25 ml	25 ml				
4	15 ml	35 ml				
5	05 ml	45 ml				

Calculation: Calculation of [CH₃COOH] in flask no.1

 $N_1V_1 = N_2V_2$ (Acid) = (Mixture)

Calculation of [CH₃COONa] in flask no.1

 $N_1V_1 = N_2V_2$ (Acid) = (Mixture)

(From using above method Calculate all concentration of CH₃COOH and CH₃COONa in mixture)

Graph: Draw the graph of pH against $\log \frac{[CH_3COONa]}{[CH_3COOH]}$

From the graph (intercept of graph) pKa

<u>Calculation of Dissociation Constant of CH₃COOH:</u>

$$pKa = -LogKa$$

$$Ka = anti \log(-pKa)$$

Ka =____

Date:	EXPERIMENT NUMBER: 4	[pH ME]	FRY- Dissociation Constant]					
Aim: To determine the Dissociation constant of monobasic acid using various mixtures of CH ₃ COOH and CH ₃ COONa by pH metry method.								
Require		~~~~						
1 Procedu	1. 0.05 M CH ₃ COOH 2. 0.05 M CH ₃	COONa	3. 4 pH buffer solution.					
rroceuu	ne:							
Results:		~~~ · ·						
1.	The Dissociation constant of CH ₃ COO)H (Ka) =	=					
	Signeture and Dat	e of Tea	cher:					

EXPERIMENT NUMBER: 5 [Refractometry]

Observation:

- 1. Wt. of Specific gravity bottle = (W_0) = _____ gm
- 2. Wt. of Specific gravity bottle + Water = (W_w) = _____ gm
- 3. Wt. of Specific gravity bottle + Liquid A = (W_A) = _____ gm
- 4. Wt. of Specific gravity bottle + Liquid B = (W_B) = _____ gm
- 5. Wt. of Specific gravity bottle + Liquid $C = (W_C) = \underline{\hspace{1cm}}$ gm
- 6. Net Wt. of Water = (W_w-W_0) =_____ gm
- 7. Net Wt. of Liquid $A = (W_A W_0) = gm$
- 8. Net Wt. of Liquid B = $(W_B-W_0)=$ _____ gm
- 9. Net Wt. of Liquid $C = (W_C W_0) = gm$
- 10. Density of Water at Room Temp.= $__0$ C = (d_w) = $__g$ m/cm³

Calculation of Density for Liquid A and B and C using following equation.

$$d_{A} = \frac{W_{A}}{W_{w}} \times d_{w}$$

$$d_{\scriptscriptstyle B} = \frac{W_{\scriptscriptstyle B}}{W_{\scriptscriptstyle w}} \times d_{\scriptscriptstyle w}$$

$$d_C = \frac{W_C}{W_w} \times d_w$$

Observation Table:

Liquids	Density (d)	Refractive Index (n)	Sp. Refraction (R)	Molar Refraction (R _m)
A				
В				
C(A+B)				

Calculation: Calculation of % composition of Liquid A and Liquid B in Liquid C (A+B)

% of Liquid A in Mixture C =
$$x = \frac{R_c - R_b}{R_a - R_b}$$

% of Liquid B in Mixture C = 100-X = _____

Date:	: 5 [Refractometry]									
Aim: To determine the Specific and Molar refraction of the given liquid A,B and C and										
Calculate % composition of A and B in Mixture C. Requirements:										
Abbe's Refractometer, Sp. gravity bottle, Liquid for practical.										
rocedure:										
Results:										
% of Liquid A = and B =	in Mixture C.									

EXPERIMENT NUMBER: 6 [Chemical Kinetics / Clock Reaction.]

Preparation of solution:

Solution A = 25 ml 3% $H_2O_2 + 25$ ml 2.5 M $H_2SO_4 + 10$ ml Starch + 190 ml Water. (Total vol. 250 ml)

Solution B₁ = 10 ml 0.04 M Na₂S₂O₃+ $\underline{10 \text{ ml}}$ 0.1 M KI + $\underline{80 \text{ ml}}$ Water. (Total vol. 100 ml)

Solution B₂ = 10 ml 0.04 M Na₂S₂O₃+ 20 ml 0.1 M KI + 70 ml Water. (Total vol. 100 ml)

Solution B₃ = 10 ml 0.04 M Na₂S₂O₃+ 30 ml 0.1 M KI + 60 ml Water. (Total vol. 100 ml)

Solution B₄ = 10 ml 0.04 M Na₂S₂O₃+ $\underline{40 \text{ ml}}$ 0.1 M KI + $\underline{50 \text{ ml}}$ Water. (Total vol. 100 ml)

Solution B₅ = 10 ml 0.04 M Na₂S₂O₃+ 50 ml 0.1 M KI + 40 ml Water. (Total vol. 100 ml)

Observation Table:

Cot	ml.	ml. from Sol. B			Reaction time (Sec.)				1/	Monelitz		
Set from Sol.	Sol.	B ₁	B ₂	B 3	B ₄	B 5	t ₁	t ₂	t ₃	Average t	$\int_{t}^{1} \sec^{-1}$	Morality of [I ⁻]
1	25	25										0.005
2	25		25									
3	25			25								
4	25				25							
5	25					25						

Calculation: Calculation of Morality [I]

(1) In B₁ solution; $N_1V_1 = N_2V_2 \Rightarrow N_1 \times 100 = 0.1 \times 10 \Rightarrow N_1 = 0.01N$

In Mixture of Set No. 1.; $N_1V_1 = N_2V_2 \Rightarrow N_1 \times 50 = 0.01 \times 25 \Rightarrow N_1 = 0.005N$

(2) In B₂ solution;

In Mixture of Set No. 2.;

(3) In B₃ solution;

In Mixture of Set No. 3.;

(4) In B₄ solution;

In Mixture of Set No. 4.;

(5) In B₅ solution;

In Mixture of Set No. 5.;

Graph: Draw the graph of $\frac{1}{t} \sec^{-1}$ against Morality [I]

If graph is straight line **order of reaction** is **first order** reaction.

Date: _	EXPERIMENT NUMBER: 6	[Chemical Kinetics / Clock Reaction.]						
Aim: To Study kinetic reaction of decomposition of H ₂ O ₂ catalyzed by iodide ion.								
Requir	rements: H ₂ O ₂ ; 2.5 M H ₂ SO ₄ ; Starch	; Water; 0.04 M Na ₂ S ₂ O ₃ ; 0.1 M KI;						
Proced	lure :							
Result	s: (from the graph) Order of reaction is							
	Order of reaction is							
	Signeture and D	ate of Teacher:						

EXPERIMENT NUMBER: 7 [Solubility.]

Observation:

Weight of empty titration flask: (W₁) _____ gm

Observation Table:

Ob. No.	Temp.	Wt. Of flask (W ₂) gm	Wt. of Solu. (W2-W1)	Vol. of 0.05N NaOH (V ml)	Wt. of acid (gm)	Solubility (S)
1	$t_1=$					
2	$t_2=$					

Calculation:

(1) Weight of Acid
$$A_1 = \frac{0.05 \times M.W. \times V \cdot ml}{1000} =$$

Weight of Acid A_2 =

(2) Solubility of Acid S

For
$$t_1 = _0 C$$
 temp. $S_1 = \frac{A \times 1000}{(B - A) \times M.W.} moles/1000 gm$

For
$$t_2 = \underline{\qquad} {}^{0}\text{C temp. } S_2 = \frac{A \times 1000}{(B - A) \times M.W.} moles/1000 gm$$

(3) Heat of Solution

$$\Delta H = \frac{\log\left(\frac{S_2}{S_1}\right) \times 2.303 \times R \times T_1 \times T_2}{\left(T_2 - T_1\right)} J/mole;$$

where, R=
$$8.314 \text{ J mole}^{-1}$$

$$T_1=t_1+273=\underline{}$$

$$T_2=t_2+273=\underline{}$$

EXPERIMENT NUMBER: 7 Date:	[Solubility.]									
Aim: To determine the solubility of organic acid at different temperatures and to determine Heat of solution of the dissolution process.										
Requirements: Small and big beaker; Thermometer, Organic acid										
Procedure :										
esults:										
Solubility of acid at t_1 =^0C = S_1 = Solubility of acid at t_2 =^0C = S_2 =										
Heat of Dissolution = $C = S_2 = \frac{C}{2}$										
Signeture and Date of Teac	pher•									

EXPERIMENT NUMBER: 8 [Viscosity]

Observation:

1. Wt. of Specific gravity bottle = (W_0) = _____ gm

2. Wt. of Specific gravity bottle + Water =
$$(W_w)$$
 = _____ gm

3. Wt. of Specific gravity bottle + Mixture
$$A = (W_A) = \underline{\hspace{1cm}}$$
 gm

4. Wt. of Specific gravity bottle + Mixture
$$B = (W_B) = \underline{\hspace{1cm}}$$
 gm

5. Wt. of Specific gravity bottle + Mixture
$$C = (W_C) = \underline{\hspace{1cm}}$$
 gm

7. Wt. of Specific gravity bottle + Mixture
$$E = (W_E) = \underline{\hspace{1cm}}$$
 gm

8. Net Wt. of Water =
$$(W_w-W_0)=$$
_____ gm

9. Net Wt. of Mixture
$$A = (W_A - W_0) = ____ gm$$

10. Net Wt. of Mixture
$$B = (W_B-W_0)=$$
 gm

11. Net Wt. of Mixture
$$C = (W_C - W_0) = gm$$

12. Net Wt. of Mixture
$$D = (W_D-W_0) = gm$$

13. Net Wt. of Mixture
$$E = (W_E - W_0) = gm$$

14. Density of Water at Room Temp.=
$$\underline{}^0$$
C = (d_w) = $\underline{}$ gm/cm³

16.
$$(d_w) \times (t_w) =$$

Calculation of Density for Mixture A,B,C,D and Unknown mixture E using following equation.

$$d_A = \frac{W_A}{W_{w}} \times d_w =$$

$$d_{\scriptscriptstyle B} = \frac{W_{\scriptscriptstyle B}}{W_{\scriptscriptstyle w}} \times d_{\scriptscriptstyle w} =$$

$$d_C = \frac{W_C}{W_w} \times d_w =$$

$$d_D = \frac{W_D}{W_w} \times d_w =$$

$$d_E = \frac{W_E}{W_w} \times d_w =$$

	ERIMENT NUMBER: 8	[Viscosity]							
oate:									
Aim: To determine the Viscosity of a different mixture of Liquid 1 and liquid 2 and determine the % composition of given unknown mixture by graphical method. Requirements:									
Viscometer, Stop-watch, Liquid mixtures. Procedure:									
Results: (from the graph)									
	and Liquid 2 =	in Unknown Mixture E.							

Observation Table:

Mixture	Mixture Composition		Time of Flaw in Sec. (t)				Density (d)	$(\mathbf{d} \times \mathbf{t})$	Relative Viscosity (η)
Number	Liquide 1	Liquide 2	i	ii	iii	Mean(t)			
A	20%	80%							
В	40%	60%							
C	60%	40%							
D	80%	20%							
E		nown osition							

Calculation: Calculation of Relative viscosity using equation. $\eta = \frac{d \times t}{d_w \times t_w}$

Graph: Draw the graph of Viscosity against % Composition of Mixture 1 OR 2.

Calculation of % composition of Liquid 1 and Liquid 2 in Liquids Mixture E from the graph.